G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca2+ channels.
نویسندگان
چکیده
5-HT produces voltage-independent inhibition of the N-, P/Q-, and T-type Ca2+ currents in sensory neurons of Xenopus larvae by acting on 5-HT1A and 5-HT1D receptors. We have explored the underlying mechanisms further and found that the inhibition of high voltage-activated (HVA) currents by 5-HT is mediated by a pertussis toxin-sensitive G-protein that activates a diffusible second messenger. Although modulation of T-type currents is membrane-delimited, it was not affected by GDP-beta-S (2 mM), GTP-gamma-S (200 microM), 5'-guanylyl-imidodiphosphate tetralithium (200 microM), aluminum fluoride (AlF4-, 100 microM), or pertussis toxin, suggesting that a GTP-insensitive pathway was involved. To investigate the modulation of the T currents further, we synthesized peptides that were derived from conserved cytoplasmic regions of the rat 5-HT1A and 5-HT1D receptors. Although two peptides derived from the third cytoplasmic loop inhibited the HVA currents by activating G-proteins and occluded the modulation of HVA currents by 5-HT, two peptides from the second cytoplasmic loop and the C tail had no effect. None of the four receptor-derived peptides had any effect on the T-type currents. We conclude that 5-HT modulates T-type channels by a membrane-delimited pathway that does not involve G-proteins and is mediated by a functional domain of the receptor that is distinct from that which couples to G-proteins.
منابع مشابه
Serotonergic inhibition of the T-type and high voltage-activated Ca2+ currents in the primary sensory neurons of Xenopus larvae.
The primary sensory Rohon-Beard (R-B) neurons of Xenopus larvae are highly analogous to the C fibers of the mammalian pain pathway. We explored the actions of 5-HT by studying the modulation of Ca2+ currents. In approximately 80% of the acutely isolated R-B neurons, 5-HT inhibited the high voltage-activated (HVA) currents by 16% (n = 29) and the T-type currents by 24% (n = 41). The modulation o...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملNeuropeptide Y receptors differentially modulate G-protein-activated inwardly rectifying K+ channels and high-voltage-activated Ca2+ channels in rat thalamic neurons.
1. Using whole-cell patch-clamp recordings, infrared videomicroscopy and fast focal solution exchange methods, the actions of neuropeptide Y (NPY) were examined in thalamic slices of postnatal (10-16 days) rats. 2. NPY activated a K+-selective current in neurons of the thalamic reticular nucleus (RT; 20/29 neurons) and ventral basal complex (VB; 19/25 neurons). The currents in both nuclei had a...
متن کاملModulation of high-voltage activated Ca2+ channels in the rat periaqueductal gray neurons by mu-type opioid agonist.
The effect of mu-type opioid receptor agonist, D-Ala2,N-MePhe4,Gly5-ol-enkephalin (DAMGO), on high-voltage-activated (HVA) Ca2+ channels in the dissociated rat periaqueductal gray (PAG) neurons was investigated by the use of nystatin-perforated patch recording mode under voltage-clamp condition. Among 188 PAG neurons tested, the HVA Ca2+ channels of 38 neurons (32%) were inhibited by DAMGO (DAM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 3 شماره
صفحات -
تاریخ انتشار 1999